July 28, 2020

PyTorch 1.6 released w/ Native AMP Support, Microsoft joins as maintainers for Windows

Today, we’re announcing the availability of PyTorch 1.6, along with updated domain libraries. We are also excited to announce the team at Microsoft is now maintaining Windows builds and binaries and will also be supporting the community on GitHub as well as the PyTorch Windows discussion forums.

Read More

July 28, 2020

PyTorch feature classification changes

Traditionally features in PyTorch were classified as either stable or experimental with an implicit third option of testing bleeding edge features by building master or through installing nightly builds (available via prebuilt whls). This has, in a few cases, caused some confusion around the level of readiness, commitment to the feature and backward compatibility that can be expected from a user perspective. Moving forward, we’d like to better classify the 3 types of features as well as defin...

Read More

July 28, 2020

Microsoft becomes maintainer of the Windows version of PyTorch

Along with the PyTorch 1.6 release, we are excited to announce that Microsoft has expanded its participation in the PyTorch community and will be responsible for the development and maintenance of the PyTorch build for Windows.

Read More

July 28, 2020

Introducing native PyTorch automatic mixed precision for faster training on NVIDIA GPUs

Most deep learning frameworks, including PyTorch, train with 32-bit floating point (FP32) arithmetic by default. However this is not essential to achieve full accuracy for many deep learning models. In 2017, NVIDIA researchers developed a methodology for mixed-precision training, which combined

Read More

May 05, 2020

Updates & Improvements to PyTorch Tutorials

PyTorch.org provides researchers and developers with documentation, installation instructions, latest news, community projects, tutorials, and more. Today, we are introducing usability and content improvements including tutorials in additional categories, a new recipe format for quickly referencing common topics, sorting using tags, and an updated homepage.

Read More

April 21, 2020

PyTorch library updates including new model serving library

Along with the PyTorch 1.5 release, we are announcing new libraries for high-performance PyTorch model serving and tight integration with TorchElastic and Kubernetes. Additionally, we are releasing updated packages for torch_xla (Google Cloud TPUs), torchaudio, torchvision, and torchtext. All of these new libraries and enhanced capabilities are available today and accompany all of the core features released ...

Read More

April 21, 2020

PyTorch 1.5 released, new and updated APIs including C++ frontend API parity with Python

Today, we’re announcing the availability of PyTorch 1.5, along with new and updated libraries. This release includes several major new API additions and improvements. PyTorch now includes a significant update to the C++ frontend, ‘channels last’ memory format for computer vision models, and a stable release of the distributed RPC framework used for model-parallel training. The release also has new APIs for autograd for hessians and jacobians, and an API that allows the creation of Custom C++ ...

Read More

March 26, 2020

Introduction to Quantization on PyTorch

It’s important to make efficient use of both server-side and on-device compute resources when developing machine learning applications. To support more efficient deployment on servers and edge devices, PyTorch added a support for model quantization using the familiar eager mode Python API.

Read More